
// Solana Program Security Assessment 12.05.2024 - 12.19.2024

Program
Proov Protocol

P r o g ra m - P r o ov P r o t o c o l

Prepared by: HALBORN

Last Updated 03/05/2025

Date of Engagement by: December 5th, 2024 - December 19th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

8

CRITICAL

1

HIGH

0

MEDIUM

0

LOW

4

INFORMATIONAL

3

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Token extensions may disable vault locking mechanism

1 0 0%

7.2 Risk of front-running the initialization
7.3 Multi-step authority transfer not enforced
7.4 Unnecessary passing of full accountinfo structures
7.5 Risk of incorrect user vault ata determination
7.6 Reliance on off-chain critical logic
7.7 Passing bumps as instruction parameters
7.8 Lack of specific error codes

8. Automated Testing

1 . I n t r o d u c t i o n

Proov Protocol team engaged Halborn to conduct a security assessment on their Slot and Vault Solana programs beginning on December 5,
2024, and ending on December 19, 2024. The security assessment was scoped to the Solana Programs, provided in a zip file via e-mail.
Further details and SHA256 checksum can be found in the Scope section of this report.

Proov Protocol is a decentralized platform for fair and efficient casino games that consists of two Solana on-chain Slot and Vault programs
and additional game programs that are out-of-scope of this assessment.

The Vault program is designed to securely store user funds, lock them when necessary, and release them under specific conditions, such
as when a user loses a game to an approved game contract. It supports any SPL tokens and interacts with pre-approved game contracts to
manage user funds according to game outcomes.

The Slot program is designed to manage game logic and track user metrics such as total wagered and total won amounts. It interacts
closely with the Vault Contract to handle fund settlements based on game outcomes.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 2 weeks for the engagement and assigned one full-time security engineer to review the security of the Solana Programs
in scope. The engineer is a blockchain and smart contract security expert with advanced smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the Solana Programs.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which were mostly solved by the Proov
Protocol team. The main ones were the following:

Make sure that the Token2022 extensions are correctly taken into account.
Introduce a secure authority transfer where the new authority is required to provide signature.
Ensure that the correct token program is passed during token allowance initialization.
Pass accounts that are not read from or written to only as instruction parameters.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of a manual review of the source code and automated security testing to balance efficiency, timeliness,
practicality, and accuracy in regard to the scope of the program assessment. While manual testing is recommended to uncover flaws in
business logic, processes, and implementation; automated testing techniques help enhance coverage of programs and can quickly identify
items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Manual program source code review to identify business logic issues.
Mapping out possible attack vectors
Thorough assessment of safety and usage of critical Rust variables and functions in scope that could lead to arithmetic vulnerabilities.
Scanning dependencies for known vulnerabilities (cargo audit).
Local runtime testing (anchor test)

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors: Reversibility and Scope. These capture
the impact of the vulnerability on the environment as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest security risk. This provides an
objective and accurate rating of the severity of security vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to address the most critical issues in a
timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

M ​E

E

E = m ​∏ e

Measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. This metric refers to
smart contract features and functionality, not state. Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts, assume the contract private key is
available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Scope () Changed (S:C)
Unchanged (S:U)

1.25
1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

C

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Low 2 - 4.4

Informational 0 - 1.9

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: Code provided via email

(b) Assessed Commit ID: 0efb1a0

(c) Items in scope:

./programs/slot/Cargo.toml

./programs/slot/Xargo.toml

./programs/slot/src/instructions/initialize.rs

./programs/slot/src/instructions/settle_user_gain.rs

./programs/slot/src/instructions/transfer_authority.rs

./programs/slot/src/instructions/mod.rs

./programs/slot/src/instructions/initialize_token_allowance.rs

./programs/slot/src/instructions/withdraw_from_bankroll.rs

./programs/slot/src/instructions/sync_config.rs

./programs/slot/src/instructions/settle_user_charge.rs

./programs/slot/src/instructions/settle_user_payout.rs

./programs/slot/src/instructions/settle_user_loss.rs

./programs/slot/src/error.rs

./programs/slot/src/lib.rs

./programs/slot/src/configuration.rs

./programs/slot/src/state/mod.rs

./programs/slot/src/state/slot_config.rs

./programs/slot/src/state/user_token_allowance.rs

./programs/slot/src/state/slot_state.rs

./programs/slot/src/model.rs

./programs/slot/src/utils.rs

./programs/vault/Cargo.toml

./programs/vault/Xargo.toml

./programs/vault/src/instructions/set_lock.rs

https://www.halborn.com/portal/reports/Code%20provided%20via%20email

./programs/vault/src/instructions/settle_loss_spl.rs

./programs/vault/src/instructions/recover_spl_by_authority.rs

./programs/vault/src/instructions/add_game_contract.rs

./programs/vault/src/instructions/approve_address.rs

./programs/vault/src/instructions/withdraw_spl.rs

./programs/vault/src/instructions/withdraw.rs

./programs/vault/src/instructions/remove_authority.rs

./programs/vault/src/instructions/initialize.rs

./programs/vault/src/instructions/add_authority.rs

./programs/vault/src/instructions/mod.rs

./programs/vault/src/instructions/remove_approval.rs

./programs/vault/src/instructions/initialize_user_deposit.rs

./programs/vault/src/instructions/close_spl_token_account.rs

./programs/vault/src/instructions/initialize_user_by_authority.rs

./programs/vault/src/instructions/remove_game_contract.rs

./programs/vault/src/instructions/initialize_user.rs

./programs/vault/src/instructions/withdraw_spl_by_authority.rs

./programs/vault/src/error.rs

./programs/vault/src/lib.rs

./programs/vault/src/state/vault_state.rs

./programs/vault/src/state/mod.rs

./programs/vault/src/state/user_deposit.rs

./programs/vault/src/model.rs

./common/Cargo.toml

./common/src/lib.rs

./Cargo.toml

./Anchor.toml

Out-of-Scope: Third party dependencies and economic attacks.

F ILES AND REPOSITORY

(a) Repository: Code provided via email

(b) Assessed Commit ID: 3333f1c

(c) Items in scope:

./programs/slot/Cargo.toml

./programs/slot/Xargo.toml

./programs/slot/src/instructions/initialize.rs

./programs/slot/src/instructions/settle_user_gain.rs

./programs/slot/src/instructions/transfer_authority.rs

./programs/slot/src/instructions/mod.rs

./programs/slot/src/instructions/initialize_token_allowance.rs

./programs/slot/src/instructions/withdraw_from_bankroll.rs

./programs/slot/src/instructions/sync_config.rs

./programs/slot/src/instructions/settle_user_charge.rs

./programs/slot/src/instructions/settle_user_payout.rs

./programs/slot/src/instructions/settle_user_loss.rs

./programs/slot/src/error.rs

./programs/slot/src/lib.rs

./programs/slot/src/configuration.rs

./programs/slot/src/state/mod.rs

./programs/slot/src/state/slot_config.rs

./programs/slot/src/state/user_token_allowance.rs

./programs/slot/src/state/slot_state.rs

./programs/slot/src/model.rs

./programs/slot/src/utils.rs

./programs/vault/Cargo.toml

./programs/vault/Xargo.toml

./programs/vault/src/instructions/set_lock.rs

./programs/vault/src/instructions/settle_loss_spl.rs

./programs/vault/src/instructions/recover_spl_by_authority.rs

https://www.halborn.com/portal/reports/Code%20provided%20via%20email

./programs/vault/src/instructions/add_game_contract.rs

./programs/vault/src/instructions/approve_address.rs

./programs/vault/src/instructions/withdraw_spl.rs

./programs/vault/src/instructions/withdraw.rs

./programs/vault/src/instructions/remove_authority.rs

./programs/vault/src/instructions/initialize.rs

./programs/vault/src/instructions/add_authority.rs

./programs/vault/src/instructions/mod.rs

./programs/vault/src/instructions/remove_approval.rs

./programs/vault/src/instructions/initialize_user_deposit.rs

./programs/vault/src/instructions/close_spl_token_account.rs

./programs/vault/src/instructions/initialize_user_by_authority.rs

./programs/vault/src/instructions/remove_game_contract.rs

./programs/vault/src/instructions/initialize_user.rs

./programs/vault/src/instructions/withdraw_spl_by_authority.rs

./programs/vault/src/error.rs

./programs/vault/src/lib.rs

./programs/vault/src/state/vault_state.rs

./programs/vault/src/state/mod.rs

./programs/vault/src/state/user_deposit.rs

./programs/vault/src/model.rs

./common/Cargo.toml

./common/src/lib.rs

./Cargo.toml

./Anchor.toml

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

3333f1c

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

1

HIGH

0

MEDIUM

0

LOW

4

INFORMATIONAL

3

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

TOKEN EXTENSIONS MAY DISABLE VAULT LOCKING MECHANISM CRITICAL SOLVED - 01/06/2025

RISK OF FRONT-RUNNING THE INITIALIZATION LOW RISK ACCEPTED - 01/06/2025

MULTI-STEP AUTHORITY TRANSFER NOT ENFORCED LOW SOLVED - 01/06/2025

UNNECESSARY PASSING OF FULL ACCOUNTINFO STRUCTURES LOW SOLVED - 01/06/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

RISK OF INCORRECT USER VAULT ATA DETERMINATION LOW SOLVED - 01/06/2025

RELIANCE ON OFF-CHAIN CRITICAL LOGIC INFORMATIONAL ACKNOWLEDGED - 01/06/2025

PASSING BUMPS AS INSTRUCTION PARAMETERS INFORMATIONAL SOLVED - 01/06/2025

LACK OF SPECIFIC ERROR CODES INFORMATIONAL SOLVED - 01/06/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 TO K E N E X T E N S I O N S M AY D I SA B L E VAU LT LO C K I N G M EC H A N I S M

// CRITICAL

Description
The instruction initialize_token_allowance allows anyone to initialize the UserTokenAllowance account on behalf of any other user. The
program is designed to support arbitrary SPL tokens and the initialize_token_allowance instruction can be used to allow any token mint to
be provided including tokens that might have various Token2022 extensions enabled.

Both programs however fail to account for potential token extensions, which can lead to operational inconsistencies when such tokens are
used. For instance, tokens with the TransferFeeConfig extension impose fees on transfers, potentially altering the final transferred amount
and causing discrepancies.

Additionally, the PermanentDelegate extension grants unrestricted permissions to transfer and burn tokens from any account associated with
the given mint. This undermines the vault locking mechanism, effectively disabling it and potentially compromising the program's security
guarantees.

user_token_allowance.rs:

pubpub fnfn initinit((&&mutmut selfself,, user user:: PubkeyPubkey,, token_mint token_mint:: PubkeyPubkey)) {{
 selfself..user user == user user;;
 selfself..token_mint token_mint == token_mint token_mint;;
 selfself..total_wagered total_wagered == 00;;
 selfself..total_won total_won == 00;;
 selfself..nonce nonce == 00;;
 selfself..total_payout total_payout == 00;;
 selfself..total_charge total_charge == 00;;
 selfself..extra_space extra_space == [[0u80u8;; 3232]];;
}}

2121
2222
2323
2424
2525
2626
2727
2828
2929
3030

initialize_token_allowance.rs:

Proof of Concept
1. Initialize the vault program.
2. Add game contract.
3. Initialize user.

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct InitializeTokenAllowanceInitializeTokenAllowance<<'info'info>> {{
 # #[[accountaccount((
 init init,,
 seeds seeds == [[USER_TOKEN_ALLOWANCE_SEEDUSER_TOKEN_ALLOWANCE_SEED..as_bytesas_bytes(()),, user user..keykey(())..as_refas_ref(()),, token_mint token_mint..keykey(())..as_refas_ref
 bump bump,,
 payer payer == signer signer,,
 space space == 88 ++ UserTokenAllowanceUserTokenAllowance::::INIT_SPACEINIT_SPACE,,
))]]
 pubpub user_token_allowance user_token_allowance:: AccountAccount<<'info'info,, UserTokenAllowanceUserTokenAllowance>>,,

 #[account()]#[account()]
 /// CHECK: reference to the user account/// CHECK: reference to the user account
 pubpub user user:: AccountInfoAccountInfo<<'info'info>>,,

 #[account(mut)]#[account(mut)]
 pubpub signer signer:: SignerSigner<<'info'info>>,,

 pubpub token_mint token_mint:: InterfaceAccountInterfaceAccount<<'info'info,, MintMint>>,,

 /// CHECK: reference to the token program/// CHECK: reference to the token program
 pubpub token_program token_program:: AccountInfoAccountInfo<<'info'info>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

commoncommon::::

5353
5454
5555
5656
5757
5858
5959
6060
6161
6262
6363
6464
6565
6666
6767
6868
6969
7070
7171
7272
7373
7474
7575
7676
7777

4. Create token mint with PermanentDelegate extension enabled.
5. Deposit funds to the user vault.
6. Set vault lock.
7. Invoke the withdraw_spl instruction before the lock expires. (this will fail as expected)
8. Invoke the transferChecked instruction with delegate before the lock expires -> this will pass and withdraw locked funds.

itit..onlyonly(("Should fail to withdraw locked spl 2022 tokens after the second lock with delegate""Should fail to withdraw locked spl 2022 tokens after the second lock with delegate",, asyncasync (()) =>=> {{
 awaitawait setLocksetLock((user1user1,, 1000010000));;
 constconst [[userDepositPdauserDepositPda,, bump bump]] == getUserDepositPDAgetUserDepositPDA((user1user1..publicKeypublicKey));;
 constconst depositAta depositAta == awaitawait getAssociatedTokenAddressgetAssociatedTokenAddress((
 SPL_TOKEN_2022_MINTSPL_TOKEN_2022_MINT..publicKeypublicKey,,
 userDepositPda userDepositPda,,
 truetrue,,
 TOKEN_2022_PROGRAM_IDTOKEN_2022_PROGRAM_ID
));;

 letlet balance balance == awaitawait PROVIDERPROVIDER..connectionconnection..getTokenAccountBalancegetTokenAccountBalance((depositAtadepositAta));;
 console console..loglog(("user vault balance before: ""user vault balance before: " ++ balance balance..valuevalue..amountamount));;
 console console..loglog((">>> withdraw_spl instruction"">>> withdraw_spl instruction"));;
 awaitawait assertPromiseThrowsassertPromiseThrows((withdrawSpl2022withdrawSpl2022((user1user1,, 10001000))));;
 balance balance == awaitawait PROVIDERPROVIDER..connectionconnection..getTokenAccountBalancegetTokenAccountBalance((depositAtadepositAta));;
 console console..loglog(("user vault balance after: ""user vault balance after: " ++ balance balance..valuevalue..amountamount));;
 console console..loglog(("\n------------------------\n""\n------------------------\n"));;
 balance balance == awaitawait PROVIDERPROVIDER..connectionconnection..getTokenAccountBalancegetTokenAccountBalance((depositAtadepositAta));;
 console console..loglog(("user vault balance before: ""user vault balance before: " ++ balance balance..valuevalue..amountamount));;
 console console..loglog((">>> transfer by the delegate"">>> transfer by the delegate"));;
 awaitawait assertPromiseThrowsassertPromiseThrows((withdrawSpl2022DelegatewithdrawSpl2022Delegate((user1user1,, 10001000))));;
 balance balance == awaitawait PROVIDERPROVIDER..connectionconnection..getTokenAccountBalancegetTokenAccountBalance((depositAtadepositAta));;
 console console..loglog(("user vault balance after: ""user vault balance after: " ++ balance balance..valuevalue..amountamount));;
 }}));;

exportexport asyncasync functionfunction withdrawSpl2022DelegatewithdrawSpl2022Delegate((
 useruser:: anchor anchor..web3web3..KeypairKeypair,,
 amount amount:: number number

)) {{
 constconst [[userDepositPdauserDepositPda,, bump bump]] == getUserDepositPDAgetUserDepositPDA((useruser..publicKeypublicKey));;
 constconst userAta userAta == awaitawait getAssociatedTokenAddressgetAssociatedTokenAddress((
 SPL_TOKEN_2022_MINTSPL_TOKEN_2022_MINT..publicKeypublicKey,,
 user user..publicKeypublicKey,,
 undefinedundefined,,
 TOKEN_2022_PROGRAM_IDTOKEN_2022_PROGRAM_ID
));;
 constconst depositAta depositAta == awaitawait getAssociatedTokenAddressgetAssociatedTokenAddress((
 SPL_TOKEN_2022_MINTSPL_TOKEN_2022_MINT..publicKeypublicKey,,
 userDepositPda userDepositPda,,
 truetrue,,
 TOKEN_2022_PROGRAM_IDTOKEN_2022_PROGRAM_ID
));;
 awaitawait transferCheckedtransferChecked((
 PROVIDERPROVIDER..connectionconnection,,
 PERMANENT_DELEGATEPERMANENT_DELEGATE,,
 depositAta depositAta,,
 SPL_TOKEN_2022_MINTSPL_TOKEN_2022_MINT..publicKeypublicKey,,
 userAta userAta,,
 PERMANENT_DELEGATEPERMANENT_DELEGATE,,
 amount amount,,
 66,,
 undefinedundefined,,
 undefinedundefined,,
 TOKEN_2022_PROGRAM_IDTOKEN_2022_PROGRAM_ID
));;
}}

BVSS

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:C/Y:N/R:N/S:U (10.0)

Recommendation
It is recommended to ensure that the allowed SPL tokens do not have enabled extensions that might compromise program security guarantees
or data consistency. This can be achieved by either maintaining a whitelist of known safe tokens or programmatically verifying the absence of
enabled extensions in the token configuration.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:C/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:C/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:C/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:C/Y:N/R:N/S:U

Remediation
SOLVED: The Proov Protocol team solved this issue by implementing a whitelist of permitted extensions, effectively blocking the use of token
mints with potentially harmful extensions.

Remediation Hash
3333f1c4e5c59c50e8e2e6d87020a817f9eeb647fed4304e4f787f3a25d770d5

7. 2 R I S K O F F RO N T- RU N N I N G T H E I N I T I A L I Z AT I O N

// LOW

Description
The instructions slot::initialize and vault::initialize do not verify that the signing authority is a specific predefined key and thus an
attacker might front-run the initialization and invoke the initialize instruction on behalf of the intended user and take control of the program.

./vault/src/instructions/initialize.rs:

./slot/src/instructions/initialize.rs:

pubpub structstruct InitializeInitialize<<'info'info>> {{
 # #[[accountaccount((
 init init,,
 seeds seeds == [[VAULT_STATE_SEEDVAULT_STATE_SEED..as_bytesas_bytes(())]],,
 bump bump,,
 payer payer == deployer deployer,,
 space space == 88 ++ VaultStateVaultState::::INIT_SPACEINIT_SPACE,,
))]]
 pubpub vault_state vault_state:: AccountAccount<<'info'info,, VaultStateVaultState>>,,

 #[account(mut)]#[account(mut)]
 pubpub deployer deployer:: SignerSigner<<'info'info>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

commoncommon::::

1616
1717
1818
1919
2020
2121
2222
2323
2424
2525
2626
2727
2828
2929
3030

pubpub structstruct InitializeInitialize<<'info'info>> {{
 # #[[accountaccount((
 init init,,

1818
1919
2020
2121

http://initialize.rs/
http://initialize.rs/

BVSS

AO:A/AC:L/AX:L/C:C/I:M/A:N/D:N/Y:N/R:F/S:U (2.8)

Recommendation
It is recommended to verify the address of the signing initialization authorities being the expected addresses.

Remediation
RISK ACCEPTED: The Proov Protocol team accepted the risk of this finding as the program will not be used until the authority is set, so the
risk is very limited.

 seeds seeds == [[SLOT_STATE_SEEDSLOT_STATE_SEED..as_bytesas_bytes(())]],,
 bump bump,,
 payer payer == authority authority,,
 space space == 88 ++ SlotStateSlotState::::INIT_SPACEINIT_SPACE,,
))]]
 pubpub slot_state slot_state:: AccountAccount<<'info'info,, SlotStateSlotState>>,,

 # #[[accountaccount((
 init init,,
 seeds seeds == [[SLOT_CONFIG_SEEDSLOT_CONFIG_SEED..as_bytesas_bytes(())]],,
 bump bump,,
 payer payer == authority authority,,
 space space == 88 ++ SlotConfigSlotConfig::::INIT_SPACEINIT_SPACE,,
))]]
 pubpub slot_config slot_config:: AccountAccount<<'info'info,, SlotConfigSlotConfig>>,,

 #[account(mut)]#[account(mut)]
 pubpub authority authority:: SignerSigner<<'info'info>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

commoncommon::::

commoncommon::::

2121
2222
2323
2424
2525
2626
2727
2828
2929
3030
3131
3232
3333
3434
3535
3636
3737
3838
3939
4040
4141

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:C/I:M/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:C/I:M/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:C/I:M/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:C/I:M/A:N/D:N/Y:N/R:F/S:U

7. 3 M U LT I - ST E P AU T H O R I T Y T R A N S F E R N OT E N FO RC E D

// LOW

Description
The transfer_authority instruction does not enforce a multi-step authority transfer process, nor does it require the new authority to provide
its signature. As a result, accidentally transferring authority to an incorrect public key—especially one without access to the corresponding
private key—would lead to a loss of control over the protocol.

transfer_authority.rs:

BVSS

AO:S/AC:L/AX:L/C:C/I:N/A:M/D:C/Y:N/R:N/S:U (2.8)

Recommendation
To address this issue, it is recommended to require the new authority to provide its signature during the transfer process, whether in a single
or multi-step instruction. This ensures that the new authority retains control over the protocol and prevents accidental transfers.

pubpub fnfn transfer_authoritytransfer_authority((ctxctx:: ContextContext<<TransferAuthorityTransferAuthority>>,, new_authority new_authority:: PubkeyPubkey)) ->-> ResultResult<<(())>> {{
 letlet slot_state slot_state == &&mutmut ctx ctx..accountsaccounts..slot_stateslot_state;;

 slot_state slot_state..set_authorityset_authority((new_authoritynew_authority));;

 msg!msg!((
 "Transferred authority from {} to {}""Transferred authority from {} to {}",,
 &&ctxctx..accountsaccounts..authorityauthority..keykey,,
 new_authority new_authority,,
));;
 OkOk(((())))
}}

66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:C/I:N/A:M/D:C/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:C/I:N/A:M/D:C/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:C/I:N/A:M/D:C/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:C/I:N/A:M/D:C/Y:N/R:N/S:U

Remediation
SOLVED: The Proov Protocol team solved this issue by requiring the new authority to provide its signature during the transfer process.

Remediation Hash
3333f1c4e5c59c50e8e2e6d87020a817f9eeb647fed4304e4f787f3a25d770d5

7. 4 U N N EC ES SA RY PAS S I N G O F F U L L AC C O U N T I N FO ST RU C T U R ES

// LOW

Description
The instructions settle_user_*, settle_loss_spl and remove_approval expect the user account to be passed as AccountInfo account.
However, these instructions do not need to read or write any data to the user account and need only the account's public key to derive relative
PDAs.

Passing the user account as AccountInfo only increases transaction size and increases overhead, resulting in higher transaction fees
compared to passing only the user's public key as an instruction parameter.

remove_approval.rs:

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct RemoveApprovalRemoveApproval<<'info'info>> {{
 # #[[accountaccount((
 seeds seeds == [[VAULT_STATE_SEEDVAULT_STATE_SEED..as_bytesas_bytes(())]],,
 bump bump,,
))]]
 pubpub vault_state vault_state:: AccountAccount<<'info'info,, VaultStateVaultState>>,,

 # #[[accountaccount((
 mutmut,,
 seeds seeds == [[USER_DEPOSIT_SEEDUSER_DEPOSIT_SEED..as_bytesas_bytes(()),, user user..keykey(())..as_refas_ref(())]],,
 bump bump,,
))]]
 pubpub user_deposit user_deposit:: AccountAccount<<'info'info,, UserDepositUserDeposit>>,,

 #[account()]#[account()]
 /// CHECK: reference to the user account/// CHECK: reference to the user account
 pubpub user user:: AccountInfoAccountInfo<<'info'info>>,,

commoncommon::::

commoncommon::::

3131
3232
3333
3434
3535
3636
3737
3838
3939
4040
4141
4242
4343
4444
4545
4646
4747
4848
4949

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:L/Y:N/R:N/S:U (2.5)

Recommendation
It is recommended to pass the public keys of accounts as instruction parameters when those accounts are not being read from or written to.
This approach avoids unnecessary overhead.

Remediation
SOLVED: TheProov Protocol team solved this issue by passing public keys as instruction parameters for accounts that are not being read from
or written to.

Remediation Hash
3333f1c4e5c59c50e8e2e6d87020a817f9eeb647fed4304e4f787f3a25d770d5

 // We allow to remove approvals only by the authority, cause settlement is done asynchronously.// We allow to remove approvals only by the authority, cause settlement is done asynchronously.
 // This is to prevent the user from removing the approval before the settlement is done onchain.// This is to prevent the user from removing the approval before the settlement is done onchain.
 #[account(#[account(
 constraint = vault_state.is_authorized(* authority.key) @ ValidationError::Unauthorized, constraint = vault_state.is_authorized(* authority.key) @ ValidationError::Unauthorized,
)])]
 pubpub authority authority:: SignerSigner<<'info'info>>,,
}}

4949
5050
5151
5252
5353
5454
5555
5656

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:L/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:L/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:L/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:L/Y:N/R:N/S:U

7. 5 R I S K O F I N C O R R EC T U S E R VAU LT ATA D E T E R M I N AT I O N

// LOW

Description
The initialize_token_allowance instruction does not validate that the token program matches the owner of the mint account. These accounts
are later used to compute the user's deposit vault's ATA. If an incorrect token program is passed, it results in an invalid ATA calculation.
Despite this, the instruction completes successfully, returning an incorrect user deposit vault ATA. This discrepancy can lead to backend
inconsistencies.

initialize_token_allowance.rs:

pubpub structstruct InitializeTokenAllowanceInitializeTokenAllowance<<'info'info>> {{
 # #[[accountaccount((
 init init,,
 seeds seeds == [[USER_TOKEN_ALLOWANCE_SEEDUSER_TOKEN_ALLOWANCE_SEED..as_bytesas_bytes(()),, user user..keykey(())..as_refas_ref(()),, token_mint token_mint..keykey(())..as_refas_ref
 bump bump,,
 payer payer == signer signer,,
 space space == 88 ++ UserTokenAllowanceUserTokenAllowance::::INIT_SPACEINIT_SPACE,,
))]]
 pubpub user_token_allowance user_token_allowance:: AccountAccount<<'info'info,, UserTokenAllowanceUserTokenAllowance>>,,

 #[account()]#[account()]
 /// CHECK: reference to the user account/// CHECK: reference to the user account
 pubpub user user:: AccountInfoAccountInfo<<'info'info>>,,

 #[account(mut)]#[account(mut)]
 pubpub signer signer:: SignerSigner<<'info'info>>,,

 pubpub token_mint token_mint:: InterfaceAccountInterfaceAccount<<'info'info,, MintMint>>,,

 /// CHECK: reference to the token program/// CHECK: reference to the token program

commoncommon::::

2424
2525
2626
2727
2828
2929
3030
3131
3232
3333
3434
3535
3636
3737
3838
3939
4040
4141
4242
4343
4444

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:L/Y:N/R:F/S:U (2.0)

Recommendation
To address this issue, it is recommended to ensure that the passed token program corresponds to the owner of the passed mint account. This
can be done by adding the following anchor constraint#[account(mint::token_program = token_program)] to the passed mint account.

Remediation
SOLVED: The Proov Protocol team solved this issue by adding a constraint that ensures that the provided token programs corresponds to the
provided mint account owner.

Remediation Hash
3333f1c4e5c59c50e8e2e6d87020a817f9eeb647fed4304e4f787f3a25d770d5

 pubpub token_program token_program:: AccountInfoAccountInfo<<'info'info>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

4444
4545
4646
4747

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:L/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:L/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:L/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:L/Y:N/R:F/S:U

7. 6 R E L I A N C E O N O F F- C H A I N C R I T I CA L LO G I C

// INFORMATIONAL

Description
The on-chain programs are used for settlement only. Critical actions, such as initiating and accepting bets, determining game outcomes, and
settling those outcomes, are handled by off-chain backend servers that are out of scope of this assessment. While the settlement instructions
require signatures from all involved backend servers, users must trust that the core logic is correctly implemented and that the backend
servers will not collude or misuse their authority.

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:N/R:N/S:U (1.5)

Recommendation
It is recommended to provide detailed documentation outlining the high-level architecture and functionality of the entire protocol, including the
role of backend servers. This transparency will enable users to make informed decisions about whether to trust the platform.

Remediation
ACKNOWLEDGED: The Proov Protocol team acknowledged this finding as this reliance on off-chain logic is by design. The detailed
documentation will be provided.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:N/R:N/S:U

7.7 PAS S I N G B U M P S AS I N ST RU C T I O N PA R A M E T E RS

// INFORMATIONAL

Description
All settle_user_* instructions and withdraw_from_bankroll instruction require PDA bumps to be passed as instruction parameters. This is
however redundant and not necessary, as the bumps can be read from Anchor's context.

While this is not a security issue in this specific implementation, allowing users to provide custom bump values introduces risks. Notably,
multiple valid bump values can exist for the same seed combination. If mishandled, this could lead to unintended behavior or security
vulnerabilities. For this reason, it is generally advised to avoid passing bump values directly in user-facing instructions.

settle_user_gain.rs:

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation
To address this issue, it is recommended to avoid passing PDA bumps as instruction parameters and rather user Anchor's ctx.bumps to get the
correct bump value.

pubpub fnfn settle_user_gainsettle_user_gain((
 ctx ctx:: ContextContext<<SettleUserGainSettleUserGain>>,,
 start_nonce start_nonce:: u64u64,,
 next_nonce next_nonce:: u64u64,,
 wagered wagered:: u64u64,,
 won won:: u64u64,,
 decimals decimals:: u8u8,,
 slot_state_bump slot_state_bump:: u8u8,,
)) ->-> ResultResult<<SettlementResponseSettlementResponse>> {{

1010
1111
1212
1313
1414
1515
1616
1717
1818

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U

Remediation
SOLVED: The Proov Protocol team solved this issue by removing the redundant bump instruction parameters and using the bumps provided in
the Anchor's context.

Remediation Hash
3333f1c4e5c59c50e8e2e6d87020a817f9eeb647fed4304e4f787f3a25d770d5

7. 8 L AC K O F S P EC I F I C E R RO R C O D ES

// INFORMATIONAL

Description
The programs extensively use the generic error code ValidationError::NotAllowed. However, this error code is applied in diverse scenarios
where it fails to describe the specific issue encountered. As a result, it provides insufficient information to users, making it challenging for
them to understand and resolve the error effectively.

By using more descriptive and context-specific error codes, the programs can improve user experience, facilitate debugging, and enhance the
clarity of error messages.

vault_state.rs:

pubpub fnfn add_authorityadd_authority((&&mutmut selfself,, authority authority:: PubkeyPubkey)) ->-> ResultResult<<(())>> {{
 require!require!((!!selfself..is_authorizedis_authorized((authorityauthority)),, ValidationErrorValidationError::::NotAllowedNotAllowed));;
 require!require!((
 selfself..authoritiesauthorities..lenlen(()) << MAX_AUTHORITIESMAX_AUTHORITIES,,
 ValidationErrorValidationError::::NotAllowedNotAllowed
));;

3434
3535
3636
3737
3838
3939

require!require!((
 !!selfself..is_game_contract_approvedis_game_contract_approved((contractcontract)),,
 ValidationErrorValidationError::::NotAllowedNotAllowed
));;
require!require!((
 selfself..game_contractsgame_contracts..lenlen(()) << MAX_GAME_CONTRACTSMAX_GAME_CONTRACTS,,
 ValidationErrorValidationError::::NotAllowedNotAllowed
));;

5252
5353
5454
5555
5656
5757
5858
5959

settle_user_charge.rs:

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation
It is recommended to introduce specific error codes and messages for various error scenarios.

Remediation
SOLVED: The Proov Protocol team resolved this issue by introducing new specific error codes and messages for various error scenarios.

Remediation Hash
3333f1c4e5c59c50e8e2e6d87020a817f9eeb647fed4304e4f787f3a25d770d5

pubpub fnfn settle_user_chargesettle_user_charge((
 ctx ctx:: ContextContext<<SettleUserChargeSettleUserCharge>>,,
 current_total_charge current_total_charge:: u64u64,,
 charge charge:: u64u64,,
 user_token_allowance_bump user_token_allowance_bump:: u8u8,,
 user_deposit_bump user_deposit_bump:: u8u8,,
 decimals decimals:: u8u8,,
)) ->-> ResultResult<<SettlementResponseSettlementResponse>> {{
 validate_multisigvalidate_multisig((ctxctx..remaining_accountsremaining_accounts))??;;
 require!require!((charge charge >> 00,, ValidationErrorValidationError::::NotAllowedNotAllowed))

utilsutils::::

99
1010
1111
1212
1313
1414
1515
1616
1717
1818

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U

8 . AU TO M AT E D T EST I N G

STAT I C A N A LYS I S R E P O RT

Description
Halborn used automated security scanners to assist with detection of well-known security issues and vulnerabilities. Among the tools used
was cargo audit, a security scanner for vulnerabilities reported to the RustSec Advisory Database. All vulnerabilities published in
https://crates.io are stored in a repository named The RustSec Advisory Database. cargo audit is a human-readable version of the advisory
database which performs a scanning on Cargo.lock. Security Detections are only in scope. All vulnerabilities shown here were already disclosed
in the above report. However, to better assist the developers maintaining this code, the auditors are including the output with the
dependencies tree, and this is included in the cargo audit output to better know the dependencies affected by unmaintained and vulnerable
crates.
Cargo Audit Results

ID CRATE DESCRIPTION

RUSTSEC-2024-0344 curve25519-dalek Timing variability in curve25519-dalek's Scalar29::sub/Scalar52::sub

RUSTSEC-2022-0093 ed25519-dalek Double Public Key Signing Function Oracle Attack on ed25519-dalek

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material changes to the
codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code
modifications.

